TM5-FASST
a global multi-metric, multi-impact assessment tool

Rita Van Dingenen, Frank Dentener
European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Ispra, Italy
TM5-FASST

FAst Scenario Screening Tool

Addresses the need for swift and ad-hoc impact assessment of pollutant emission scenarios (air quality policies, climate policies) in a global framework
Emissions (model input):
SO₂, NOₓ, NH₃, CO, NMVOC, Elemental Carbon, Primary Organic Matter, PM₂·₅, CH₄

Model output (non exhaustive):
• PM₂·₅ concentration and impacts on human health
• O₃ and O₃ metrics, impacts on agriculture and health
• Radiative forcing
 CO₂e based on GWPhh and GTPhh
 BC deposition (e.g. Arctic, Himalayas,…)
Precursor – pollutant dependencies included in TM5-FASST:

<table>
<thead>
<tr>
<th>Pollutant→ Precursor↓</th>
<th>SO₂ gas</th>
<th>NOₓ gas</th>
<th>NH₃ gas</th>
<th>O₃ gas</th>
<th>SO₄ pm</th>
<th>NO₃ pm</th>
<th>NH₄ pm</th>
<th>BC pm</th>
<th>OM pm</th>
<th>SOₓ dep</th>
<th>NOᵧ dep</th>
<th>BC dep</th>
<th>Rad. Forc</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂ (g)</td>
<td>XXX</td>
<td>x</td>
<td>xx</td>
<td>x</td>
<td>XXX</td>
<td>xx</td>
<td>xx</td>
<td></td>
<td></td>
<td>XXX</td>
<td></td>
<td></td>
<td>xxx</td>
</tr>
<tr>
<td>NOₓ (g)</td>
<td>x</td>
<td>XXX</td>
<td>xx</td>
<td>XXX</td>
<td>XX</td>
<td>XXX</td>
<td>xx</td>
<td></td>
<td></td>
<td>x</td>
<td>XXX</td>
<td></td>
<td>xxx</td>
</tr>
<tr>
<td>NH₃ (g)</td>
<td>x</td>
<td>x</td>
<td>XXX</td>
<td>x</td>
<td>XX</td>
<td>XX</td>
<td>XXX</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>xxx</td>
<td>xxx</td>
</tr>
<tr>
<td>NMVOC (g)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>XXX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>xx</td>
</tr>
<tr>
<td>BC (pm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XXX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POM (pm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XXX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO (g)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>xx</td>
<td></td>
<td></td>
<td>xx</td>
</tr>
<tr>
<td>CH₄ (g)*</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>xxx</td>
</tr>
</tbody>
</table>

* source-receptors from HTAP1
Delta concentration footprints from a +20% emission perturbation
Linearity issues:

Error when emission changes go beyond -20% perturbation?

- Compare linearized with full CT model for -80%, +100% emission perturbation

- For selected source regions:
 - EUROPE
 - USA
 - JAPAN
 - CHINA
 - INDIA
 - GERMANY only

Population weighted PM2.5

- PM2.5 (NH₃)
- PM2.5 (NOₓ)
- PM2.5 (SO₂)

For selected source regions:
- EUROPE
- USA
- JAPAN
- CHINA
- INDIA
- GERMANY only
Linearity issues:
Error when emission changes go beyond -20% perturbation?

- Compare linearized with full CT model for -80%, +100% emission perturbation

- For selected source regions:
 - EUROPE
 - USA
 - JAPAN
 - CHINA
 - INDIA
 - GERMANY only
Methodology
Health impacts

- **PM2.5**: 2-causes mortalities (Krewski et al. 2000, as in Anenberg et al., 2010)
- **PM2.5**: 5-causes mortalities (Burnett et al., 2013, no age classes)
- **O3**: long-term mortalities (Jerett et al., 2009, as in Anenberg et al., 2010)
- Cause-specific base Mortality data (+ projections till 2030) for 14 world regions from WHO
- High resolution gridded population data overlaid with high-resolution interpolated PM2.5 & O₃ fields

Contribution of air pollution (PM2.5) to total cause-specific mortalities as a function of PM2.5 concentration

- Anenberg approach
- Burnett et al. (new approach)

Burnett: Lower impact (benefits) at high PM2.5
e.g. at PM2.5 = 100µg/m³
52% of the “stroke” mortalities are attributable to PM2.5
Methodology
Health impacts

Urban increment subgrid parameterization

FASST-TM5 resolution = 1°x1°
Grid-mean PM not adequately representing population exposure when emission / concentration gradients are present within grid (urban vs. rural area)

→ Parameterization adjusting grid-mean concentration to urban incremented population-weighted exposure

→ Based on urban population fraction f_{up} and urban area fraction f_{ua} within gridcell - based on high-resolution gridded population data (UN, CIESIN)

$$C_{BC,TM5}^{pop} = \left[\frac{(f_{UP})^2}{f_{UA}} + \frac{(1 - f_{UP})^2}{1 - f_{UA}} \right] \cdot C_{BC,TM5}^{area}$$

![Graph showing primary PM correction factor vs. urban population fraction for N-AM, EUR, and CHINA.](image)
Methodology
Crop impacts

- Based on 2 metrics:
 - AOT40 (least robust)
 - 3 monthly (growing season) daytime O3 mean
- Crop production and growing season gridmaps from GAEZ for year 2000.
2030 MIT (low emission scenario)

<table>
<thead>
<tr>
<th>Region</th>
<th>BC</th>
<th>NH3</th>
<th>NOx</th>
<th>POM</th>
<th>SO2</th>
<th>NMVOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIA</td>
<td>-47%</td>
<td>+19%</td>
<td>-30%</td>
<td>-49%</td>
<td>-61%</td>
<td>-35%</td>
</tr>
<tr>
<td>LAM</td>
<td>-45%</td>
<td>+47%</td>
<td>-53%</td>
<td>-27%</td>
<td>-41%</td>
<td>-28%</td>
</tr>
<tr>
<td>MAF</td>
<td>-30%</td>
<td>+33%</td>
<td>-40%</td>
<td>-29%</td>
<td>-49%</td>
<td>-30%</td>
</tr>
<tr>
<td>OECD90</td>
<td>-71%</td>
<td>+14%</td>
<td>-82%</td>
<td>-31%</td>
<td>-89%</td>
<td>-64%</td>
</tr>
<tr>
<td>REF</td>
<td>-62%</td>
<td>+34%</td>
<td>-65%</td>
<td>-30%</td>
<td>-80%</td>
<td>-34%</td>
</tr>
<tr>
<td>SHIPPING+AVIATION</td>
<td>-10%</td>
<td>+0%</td>
<td>-1%</td>
<td>-7%</td>
<td>-74%</td>
<td>+30%</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>-47%</td>
<td>+25%</td>
<td>-48%</td>
<td>-35%</td>
<td>-69%</td>
<td>-37%</td>
</tr>
</tbody>
</table>

2030 FLE (high emission scenario)

<table>
<thead>
<tr>
<th>Region</th>
<th>BC</th>
<th>NH3</th>
<th>NOx</th>
<th>POM</th>
<th>SO2</th>
<th>NMVOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIA</td>
<td>+97%</td>
<td>+21%</td>
<td>+165%</td>
<td>+20%</td>
<td>+98%</td>
<td>+53%</td>
</tr>
<tr>
<td>LAM</td>
<td>-16%</td>
<td>+47%</td>
<td>+9%</td>
<td>-23%</td>
<td>+17%</td>
<td>+30%</td>
</tr>
<tr>
<td>MAF</td>
<td>+71%</td>
<td>+36%</td>
<td>+33%</td>
<td>+23%</td>
<td>+107%</td>
<td>+76%</td>
</tr>
<tr>
<td>OECD90</td>
<td>-27%</td>
<td>+17%</td>
<td>-40%</td>
<td>-9%</td>
<td>-22%</td>
<td>-39%</td>
</tr>
<tr>
<td>REF</td>
<td>-18%</td>
<td>+35%</td>
<td>-0%</td>
<td>-18%</td>
<td>+10%</td>
<td>+3%</td>
</tr>
<tr>
<td>SHIPPING+AVIATION</td>
<td>+3%</td>
<td>+0%</td>
<td>-13%</td>
<td>+7%</td>
<td>+24%</td>
<td>+4%</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>+45%</td>
<td>+27%</td>
<td>+11%</td>
<td>+7%</td>
<td>+29%</td>
<td>+33%</td>
</tr>
</tbody>
</table>
COMPARISON TM5-FASST with FULL TM5-CTM

PM2.5 (µg/m³) prem. mortalities prem. mortalities

FASST CTM

FASST CTM

2005 2005

2030LOW 2030LOW

2030HIGH 2030HIGH

EUR NAM China+ India+ Russia Brazil RSEAS EUR NAM China+ India+ Russia Brazil RSEAS EUR NAM China+ India+ Russia Brazil RSEAS

TM5-CTM TM5-FASST TM5-CTM TM5-FASST TM5-CTM TM5-FASST
COMPARISON TM5-FASST with FULL TM5-CTM

O$_3$ (ppbv)
6 month daily max av

2005

2030 LOW

2030 HIGH

prem. mortalities

prem. mortalities
Typical TM5-FASST applications

• LIMITS: AQ co-benefits of climate scenarios from 6 IAM emission scenario ensemble
 • 6 models x 3 AQ scenarios x 2 climate policy scenarios x 4 years
 ➢ 144 runs (without counting resubmissions)

• UNEP Ozone and BC assessment: Health impact apportionment by region, by SLCP mitigation measure

• WHO Health impact apportionment by country, by sector

• Screening of SSPs scenarios for plausibility and consistency of pollutant levels with storylines (6 models x 5 SSPs x 3 climate scenarios x 3 years)
Few results

Projected man-made PM2.5 levels in 2030 (CLE, no MIT)

Projected decrease in PM2.5 levels in 2030 as a consequence of Climate Mitigation measures only

Projected O3 levels in 2030 (CLE, no MIT)

Projected decrease in O3 levels in 2030 as a consequence of Climate Mitigation measures only

LIMITS project

Air quality co-benefits of climate policies
6 IAMs, air pollutant emissions processed with TM5-FASST
Avoided premature mortalities

Avoided crop losses
TM5-FASST-WEB is now accessible on-line

http://fasst-web.jrc.it/

Regional delta (PM, O3, impacts) between 2 emission sets

✓ Perturbation of baseline emissions
 - By sector
 - By component
 - By region

✓ Library of emission scenarios
✓ Submit own emission scenarios
 (demo during coffee break)
Next steps:

Source-receptors:
• Extend FASST on-line version with HTAP2 S/R
• Ensemble output with statistics

Impact modules:
• Implementation of NO$_y$ and SO$_x$ wet deposition
• Regional forcing and Temp response from SLCP
• Better treatment of crop impacts (flux) – but how?