Impact of Aviation Emissions on Atmospheric Composition and Climate

Jacek W. Kaminski
Centre for Research in Earth and Space Science
York University, Canada

Joanna Struzewska
Warsaw University of Technology, Poland

February 18, 2016
HTAP meeting, Potsdam, Germany
Outline

• Motivation
• GEM-AC model description and configuration
• Emissions → current and future climate
• Analysis methodology
• Impact on climate in the interactive model
• Impact on atmospheric composition (up to 1mb)
• Impact on air quality (ozone)
• Summary
Motivation

• Study of aviation emissions deposition in the atmosphere and resulting interactions with the environment

• Apply an integrated modelling framework to conduct research on:
 – Impacts of aviation emissions that focuses on the chemistry and transport aspects in current and future climate states in the Arctic
 • In the UT/LS (upper troposphere/lower stratosphere)
 • At the surface (ozone and PMs)
 – Climate impacts of future emission scenarios in the Arctic

This project is funded by Transport Canada in collaboration with FAA and Warsaw University of Technology.
GEM-AC model description

- On-line implementation of stratospheric, tropospheric chemistry and aerosols in the Canadian weather forecast model the Global Environmental Multiscale (GEM) model
 - 70 hybrid levels with model top at 60 km (0.1 hPa)
 - Chemistry: 75 gas phase species, 194 chemical reactions, 45 photochemical reactions
 - Aerosol microphysics (M7)
 - Climate physics
 - Ozone and water from chemistry used in radiation calculation
Model Configuration

• For climate runs 3x3 deg grid is used

• High resolution (0.5 deg) model simulations over the Arctic (with a wide margin)

• Initial conditions for current climate (i.e. year 2006) from Canadian Meteorological Centre objective analysis

• Initial conditions (meteorology and chemistry) for future climate in 2025 and 2050 taken from the GEM-Clim model
GEM-AC model configuration

• Climate runs at 3x3 degree resolution

• Emissions
 – Anthropogenic:
 • ACCMIP historical emissions – current climate
 • RCP 8.5 for 2050
 – Aviation (NOx, SO2, CO, BC) from FAA (AEDT, Volpe)
 • 2006 year hourly emissions calculated from FAA and Euro Control flight data (distance traveled, aircraft and engine type)
 • 2050 FAA base scenario – aviation fleet is developed by retiring and replacing older aircraft.

• SST from Canadian Earth System Model - CanESM2
Aviation emissions

Vertical (ft.) distribution of NOx emissions (g) for January 2006

2006 reference year
based on FAA and Euro Control radar data – lat/long 1 deg. 500 ft. altitude grid

2050 Baseline
do nothing with regard to technology and operational improvements.
The 2050 fleet is developed by retiring and replacing older aircraft.
Analysis methodology

• Two time slices selected (10 years): 2000, 2050
• DELTA – difference between scenario with aviation emissions (A1) and without (A0)
• Temporal averaging – monthly
• Spatial averaging:
 – Focus on the Northern Hemisphere
 – Hemispheric zonal average – western and eastern centred over the North Pole
 – Longitudinal average in bands: 0-30N, 30-60N, 60-90N
Hemispheric zonal average (western and eastern hemisphere centered over North Pole)

Longitudinal average in bands:
0-30N, 30-60N, 60-90N
Impact on meteorology/climate – Temperature 2000 (delta A1 – A0)

- DJF
- MAM
- JJA
- SON
Impact on meteorology/climate – Geopotential 2000 (delta A1 – A0)

DJF

W & E hemispheric average for A1-A0_3x3_2006_DJF

Annual average

MAM

W & E hemispheric average for A1-A0_3x3_2006_MAM

JJA

W & E hemispheric average for A1-A0_3x3_2006_JJA

SON

W & E hemispheric average for A1-A0_3x3_2006 Sonata
Impact on meteorology/climate – Wind delta A1-A0 (March 2000)

Zonal wind – U [knots]

Meridional wind – V [knots]
Impact on ozone (delta A1- A0)

W & E hemispheric average for A1-A0_3x3_200607

July 2000

W & E hemispheric average for A1-A0_3x3_205207

July 2050
Impact on ozone (delta A1-A0)

Average latitude bands for A1-A0_3x3_200607

Average latitude bands for A1-A0_3x3_205207

July 2000

July 2050
Impact on NOx (delta A1 – A0)

July 2000

July 2050
Impact on NOx (delta A1 – A0)

Average latitude bands for A1-A0_3x3_200607

Average latitude bands for A1-A0_3x3_205207

July 2000

July 2050
GEM-AC model results: 5-year climate run

Current

2050

Scenario with minus without aviation emissions
Summary 1/2

• Significant impact of aviation emissions on meteorological parameters. Modification of thermal structure and circulation
 – Lack of aviation emissions may result in model inaccuracy
 – Further work – comparison with reanalysis

• Impact on near surface air quality (ozone)
Summary 2/2

• Significant impact of aviation emissions on atmospheric composition
 – Maximum impact in the stratosphere
 – High signal in the Arctic (>60°N)
 – Similar pattern on DELTAs in current and future climates, but:
 • Higher contribution of aviation emissions to tropospheric ozone budget in 2050
 • Smaller increase (or decrease) of NOx in the troposphere in 2050 (change of chemical regime ?)

• Further work – analysis for other species