Development in Emission Inventory for Transportation in China

Ye Wu and Jiming Hao
School of Environment, Tsinghua University
October 8, 2012
Background

The rapid increase in vehicle population in China has been severely taxing the energy and material resources, and also posing a challenge to the mitigation of CO$_2$ and urban criteria air pollutants.
Total vehicle population will continue to increase rapidly, and will reach 210-240 million units in 2020, and 410-530 million units in 2030!

No matter which growth scenario, China will become the leading country in vehicle population within the next 15 years.
Major On-road Transportation Research Areas in THU

- Emission factor model and high-resolution emission inventories for on-road vehicles in major cities and regions of China
 - Chassis test and on-road tests with PEMS for LDVs and HDVs
 - Emission factor model development for Beijing, Macao, and other cities
 - High resolution emission inventory integration with urban traffic flows
 - Comprehensive environmental impact assessment tools for different control measures and policies

- Life-cycle assessment of energy, CO2 and environmental impacts of new advanced technologies and alternative fuels
 - Both fuel-cycle and vehicle-cycle are included: feedstock recovery, fuel production, vehicle operation, vehicle material recovery and production, and vehicle assembly and disposal
 - Vehicle/fuel systems: HEV, PHEV, EV, CNGV/LNGV, EtOH, BD, etc.
Current status and future trends in vehicle emission control in China: 2010-2030

- Current status and future trends in emission control regulations
 - **New vehicle emission standards:**
 - Light duty vehicles: Euro 4 (now) to Euro 6 (~2020)
 - Heavy duty vehicles: Euro 3 (now) to Euro 6 (~2025)
 - **Fuel quality:** 50 ppm S nationwide in ~2015-2020; and 10 ppm S in ~2025-2030
 - **Restriction in vehicle travel demand and total population:** such as stop driving one day a week, restriction in new vehicle purchase, etc., might be popular in many major cities of China

- In the future, three major vehicle categories need to pay special attention:
 - **Heavy-duty diesel vehicles (HDDV):** high emission profiles, high VKT, etc.
 - **Off-road vehicles:** poor emission controls, poor fuel quality, etc.
 - **New-energy and alternative fueled vehicles (e.g., EV, CNGV):** totally different emission profiles in life-cycle point of view
THU has developed a detailed emission database with thousands of tested vehicles

- Real-world on-road vehicle measurement
 - Gaseous air pollutants and PM (both mass and number concentrations)
 - Driving cycle development and vehicle activity database
- Chassis dynamometer and remote sensing measurement
Vehicle emission factor models for Beijing and other cities in China have been developed

Emission factor model for Beijing vehicle fleet (EMBEV 1.0)

Vehicle category of EMBEV V1.0:
Light-duty passenger vehicle 1 (G)
Light-duty passenger vehicle 2 (G, D)
Medium-duty passenger vehicle (G, D)
Heavy-duty passenger vehicle (G, D)
Light-duty truck (G)
Heavy-duty truck 1 (G, D)
Heavy-duty truck 2 (G, D)
Heavy-duty truck 3 (G, D)
Motorcycle (G)
Bus (G, D, CNG, hybrid)
Taxi (G)

Note: G = gasoline, D = diesel, CNG = compressed natural gas, hybrid = hybrid diesel-electric

1. **Emission measurement:** 1500 LDGVs dynamometer tests and 150 HDDVs PEMS tests
2. **Modeling methodology:**
 a. For LDGVs, basic emission factors (BEFs) under a typical driving cycle and then corrected by a series of operating conditions (e.g., speed, fuel quality, I/M, air-conditioning, etc.)
 b. For HDDVs, an operating mode binning methodology based on VSP and vehicle speed.
Major findings on NOX emissions for HDDVs: no reduction was found based on PEMs.

These new on-road test results indicate that previous estimates of total NOX emissions for HDDV fleet may be significantly underestimated. This would also result in 4% increase in estimation of national anthropogenic NOX emissions.

Wu, Zhang, Hao, ACP, 2012 (in press)
City-Region-Nation: integration of three levels in resolution for emission inventory development

On-road Sources
(Cars, trucks, buses, taxis, etc.)

Off-road Sources
(Forklifts, boats, ships, tractors, etc.)

Different Scale Emission Inventories

Nation
Each provinces

Region/City clusters
e.g. Jing-Jin-Ji, Yangtze-River-Delta, Pearl-River-Delta

City
High resolution emission inventory
City-Region-Nation: integration of three levels in resolution for emission inventory development

- **Database for each regions/cities:**
 - Calendar year, vehicle population, registered vehicle distribution...
 - Vehicle technologies...
 - Various fuel options...
 - Traffic flows and vehicle activity data...

- **Database for the calculation of emission factors**
 - Basic emission factors
 - Speed correction
 - Fuel quality correction
 - …
A comprehensive EIA tool was developed to evaluate the environmental impacts of different control measures in Chinese cities, such as Beijing, Guangzhou, Macao, etc, during the time period of 2000-2030.

Temporal control planning for big events, such as Beijing Olympics, Shanghai Expo, and Guangzhou Asian Games, was carefully evaluated.

Zhou, Wu, Hao, et al., AE, 2010;
New-energy vehicles and alternative fueled vehicles need to be carefully examined in China in the future.

Conventional Spark-Ignition Vehicles
- Conventional gasoline, federal reformulated gasoline, California reformulated gasoline
- Compressed natural gas, liquefied natural gas, and liquefied petroleum gas
- Gaseous and liquid hydrogen
- Methanol and ethanol

Compression-Ignition Direct-Injection Hybrid Electric Vehicles: Grid-Independent and Connected
- Conventional diesel, low sulfur diesel, dimethyl ether, Fischer-Tropsch diesel, E-diesel, and biodiesel

Battery-Powered Electric Vehicles
- U.S. generation mix
- California generation mix
- Northeast U.S. generation mix
- User-selected generation mix

Fuel Cell Vehicles
- Gaseous hydrogen, liquid hydrogen, methanol, federal reformulated gasoline, California reformulated gasoline, low sulfur diesel, ethanol, compressed natural gas, liquefied natural gas, liquefied petroleum gas, and naphtha

Spark-Ignition Hybrid Electric Vehicles: Grid-Independent and Connected
- Conventional gasoline, federal reformulated gasoline, California reformulated gasoline
- Compressed natural gas, liquefied natural gas, and liquefied petroleum gas
- Gaseous and liquid hydrogen
- Methanol and ethanol

Spark-Ignition Direct-Injection Vehicles
- Conventional gasoline, federal reformulated gasoline, and California reformulated gasoline
- Methanol and ethanol
New-energy vehicles and alternative fueled vehicles need to be carefully examined in China in the future.

Demonstration of HEV/PHEV/EV in 25 cities of China (2009-2012)

Legend
- 2500 units
- 1000 units
- EV
- HEV
- PHEV
HEV can achieve 30% reduction in petroleum use relative to ICEV; while PHEV50 can achieve 50% reduction, and EV almost eliminates the petroleum use.

In this study, we use a FE rate of 140% for HEV, 280% for CD mode and 120% for CS mode for PHEV50 (AER= 50 km), and 325%-375% for EV relative to ICEV. For ICEV, FE values are 8.5, 7.3 and 6.4 L/100 km for 2010, 2020, and 2030, respectively. (Wu, Yang, Hao, Energy Policy, 2012)
The impacts of energy use, CO₂ and air pollutant emissions are quite different

- The WTW CO₂ reduction benefit is much less for PHEV/EV for those regions (e.g., Jing-Jin-Ji region) with dominant coal-fired power plants.
- However, in those regions that already have a sizeable proportion of clean electric energy (e.g., Pearl-River-Delta region) will relieve the overall CO₂ burden substantially with promotion of PHEV and EV in the future. (Wu, Yang, Hao, Energy Policy, 2012)
The impacts of energy use, CO\textsubscript{2} and air pollutant emissions are quite different

For LDV, WTW NO\textsubscript{x} emission of EV is higher than ICEV by 50-100%, especially in those regions (e.g., Jing-Jin-Ji region) with dominant coal-fired power plants

WTW NO\textsubscript{x} emission of EV might be lower than ICEV after 2020 in those regions that already have a sizeable proportion of clean electric energy (e.g., Pearl-River-Delta region).

With a wide use of NO\textsubscript{x} control devices (e.g., SCR) in the next 10 years for coal-fired power plants, NO\textsubscript{x} emission of EV will decrease more rapidly than that of ICEV.
Thank you for your attention!

Questions and Comments?