Overview TF HTAP draft final report PART A: Ozone-Aerosol

- Per chapter
- Status
- Research needs
 - What are the main messages that need to be brought out?
 - What do we know and why should we care?
 - What work needs to be completed to convey these main messages?

Chapter structure

- Chapter A1: Conceptual Overview of Hemispheric or Intercontinental Transport of Ozone and Particulate Matter
- Chapter A2: Observational Evidence
- Chapter A3: Emissions & Projections
- Chapter A4: Global and Regional Modeling
- Chapter A5: Impacts on Health, Ecosystems, and Climate
- Chapter A6: Synthesis

A1: Conceptual Overview of Hemispheric or Intercontinental Transport of Ozone and Particulate Matter. Dick Derwent/Owen Cooper

- Introducing policy context; source, transport patterns, emissions, lifetimes
 Baseline concentrations refer to observations made at a site when it is not influenced by recent, locally emitted or produced man-made pollution.
 Global or hemispheric background concentration is a model construct that estimates the atmospheric concentration of a pollutant due to natural sources only.

- Source Receptor versus Source Attribution

- What are the driving mechanisms of long-range transport/meteorology, and how influence by climate change.

- Introduction of Chapter 2-6 (small update if needed)

- 27 pages

A1: Pathways of hemispheric pollution transport

- CO passive tracer
- Flexpart, A. Stohl et al, 2004

Lower troposphere
Mid-upper troposphere
A2 Observational Evidence and Capabilities Related to Intercontinental Transport of Ozone and Aerosols. Kathy Law, David Parrish

- Direct observational evidence for long-range transport of ozone and aerosols from satellite, aircraft, and ground-based data.
- Long-term changes (trends) in the amount of ozone or aerosols using meteorological/tracer measurements for source attribution.
- Field experiments.
- Recommendations.

A2.2 ozone

Present satellite retrievals are limited to tropospheric columns with little vertical profile information. Satellites are particularly valuable for tracking emission changes of NO2 over source regions. Also other components (CO, SO2, CH4).

A2: example of event

Several other examples: Do they convey the message of event and broad continuous transport and their relevance?
A2: Ozone trends

Pre-industrial levels not well understood
What about recent trends?

A2: Air quality implications

LRT Air quality issues in outflow of Asia and in Arctic

A2 transport of Aerosol satellite based

Increasing role of lidar, satellite, and satellite lidar

Ground-based lidar networks and mountain top measurement sites in Europe, North America and Asia provide large continuous data sets to characterize events

A2: long term surface observations

Decades in-situ measurements have established the importance of intercontinental transport of aerosol from dust, forest fires, and anthropogenic sources.

Need for expansion of observational networks

Optimum observation strategy for in situ and ground-based measurements to characterize intercontinental transport of aerosols. A particular focus should be on additional measurements to quantify the sources and properties of the organic and black carbon components of transported aerosols.
A2: Models–Measurement: Flexpart, adjoint, inverse

Particle dispersion models for source attribution; adjoint, complementary to Eulerian models
Picture also in Chapter 4

A2: Use of tracer (ratios) to demonstrate LRT

• Utilize proxy records of aerosol deposition (e.g. from ice cores) as targets to test simulations of chemical transport models over multi-decade intervals.

Analysis of long-term aerosol and trace element records provides information about inter-annual variability in source attribution as a particular downwind measurement site as well as insights into how emissions may have changed in the past.

A2 Tracer ratios, O3-CO-VOC, fingerprinting

• Measured trace elements and isotopic ratios can provide useful constraints on different source types and emission regions influencing aerosol data.
• Further development of isotope and geochemical fingerprinting techniques for the identification of different source types and, in the case of stable isotopes information about chemical processes occurring during transport.

A2: Lagrangian experiments

• Provide information on plume processing during transport.
• Evaluates performance of global models, and the impact of resolution, regarding plume transport and speed of dilution.
• Can be used to develop plume-in-grid descriptions for global models.
• Better understanding of mass entrainment FT to BL.
A2: Research needs

- Surface sites; mountains sites; role of WMO-GAW
- Vertical profiles
- Aircraft: commercial airlines and unmanned aircraft
- Satellite: current use, w/ surface observations models; geostationary, future missions (gap)
- Using existing datasets for testing of models: beyond climatological testing/events

A2: Remaining Issues

- Rather long 67 pages=>shorten.
- Some duplications (e.g. modelling section w/chapter 3.4).
- Some sections need more focus on message
- Many key messages: would be good to reduce/combine/organize them to make them stronger
- ... but overall a lot of good material is there!

A3: Emissions and Projections, J. van Aardenne, D. Streets

- Available datasets for studies of hemispheric transport of AP: current and future (RCPs)
- Description of data in EDGAR-HTAP (hierarchy of datasets)
- Emission trends 1850-2100
- Natural emissions
- Case study for Asia
- Examples of trends in the USA
- Integration of emissions, modelling, measurements
- Constraints from satellites

A3: Current+future datasets

Long-term emission trend datasets (century-scale) are becoming available and present a new opportunity to characterize intercontinental pollution flows in the past and future.

Uncertainties are higher the further away we get from present-day conditions

Grided emission distributions for the past and future are rudimentary.
A long-term dataset of major anthropogenic emissions from 1850-2100 at 0.1° × 0.1° available for use in chemical transport models to assess changes in intercontinental transport over time. Future emissions use the IPCC AR5 Representative Concentration Pathway (RCP) scenarios.

• Comparison of the EDGAR-HTAP dataset (regional emission inventories substitute global data) (2000-2005)
• Present-day emissions are relatively well understood by sector and world region but some species are still unreliable in some parts of the world (e.g., black carbon and NMVOC emissions from developing countries, NH3)
• New spatially distributed proxy datasets are needed to more accurately distribute past and future emissions
• This adds uncertainty to our ability to reliably model intercontinental transport; some source/receptor relationships are inherently better known than others

Emissions are not always the same among inventories compiled by different research groups, and sometimes the differences are large.
• Harmonisation good, but finding underlying reasons better
• Lessons to be learned from country/regional inventories (e.g. RAPIDC)

The integrated study of emissions, forward and inverse modeling, and satellite and ground observations can usefully bound source magnitudes and lead to improved emission inventories.

• Previous studies demonstrate a clear need for the development of an integrated framework of emissions, models, and observations that can be readily applied to different intercontinental transport situations and can quickly adapt to new technical capabilities as they arise (new satellite retrievals, new network data releases, etc.)
• Careful study of the large-scale relationships between primary precursor emissions (e.g., emission rates, speciation profiles) and observed secondary species (from satellites, campaigns, networks) can advance our understanding of the formation mechanisms and our ability to select effective mitigation options for the primary species.
A3: Issues

- 55 pages - lots of figures, it can be shortened. Overall structure seems to work.
- Some duplications (e.g., modelling section with chapter 2; satellite stuff).
- Some sections need to be completed, material to be integrated.
- Good section on integration.
- Missing explicit description of emissions used in Chapter 5, mitigation costs.

A4: Global and Regional Modeling G. Carmichael, O. Wild

- Description of modelling approaches; intercomparison, model source attribution.
- Quantification of intercontinental transport.
- O3 trends.
- HTAP modelling study; CH4, yearly month, MDA8 (policy relevant) O3.
- LRT influence of O3 on various time and spatial scales, scalability of O3 SR (linearity).
- Aerosol SR surface concentrations, deposition, column load, linearity of aerosol SR policy relevant SR.
- AEROCOM-HTAP specific experiments on dust and biomass burning, hindcast.
- Source attribution.
- Uncertainty: parameterizations, resolution, chemistry.
- Changes due to future emissions and climate change.

The observed regional and seasonal variability in surface ozone is reproduced relatively well in current models lending confidence in our ability to represent the key large-scale processes controlling the formation, transport and removal of ozone and its precursors. However, significant discrepancies exist on shorter spatial and temporal scales indicating weaknesses in our representation of local- and urban-scale processes in current models.

Regional model studies suggest that sub-grid-scale processes (convection, frontal lifting, heterogeneous PBL mixing, etc.) have a major effect on pollution export. Differences in chemical mechanism lead to large differences in regional model results. Support the application of high-resolution global and regional models to investigate the effect of smaller-scale processes on continental import and export budgets.

Current global CTMs are unable to resolve the strong chemical contrasts associated with urban regions, and so are not generally appropriate for evaluating the impact of long-range transport on attainment of air quality standards in these environments.
Given that models may be underestimating the anthropogenic contribution to surface ozone, we have high confidence that current surface ozone is significantly higher than preindustrial levels (NAS, 2009).

The observed increase in surface ozone over the past 40 years is reproduced qualitatively by current models, but there are significant differences in the magnitude and regional variation in this trend compared with observations. These discrepancies indicate that precursor emissions and/or atmospheric processes are not represented well in current models.

Need to examine observed trends in surface ozone through multi-year model simulations using most reliable assessments of changing emissions and meteorology in order to

1. explain/attribute changes,
2. put observed trends in a global context, and
3. critically test model ability to reproduce long-term composition changes.

Estimates of S-R relationships indicate that 20% changes in present-day anthropogenic precursor emissions affect regional monthly mean surface ozone by 0.2-0.9 ppbv over continental regions downwind. This is about 10-20% of the impact over the emission region itself on an annual basis. However, this masks large temporal and geographic variability which needs to be characterized much better.

Future changes in climate are expected to increase the effect of precursor emissions over the source region and reduce the effect over downwind receptor regions. However, the magnitude of these effects is relatively small, and is driven by changes in the lifetime of NOy and not by changes in transport patterns. The effect of natural emission changes and wider climate-related feedbacks have not been evaluated fully yet.

Controling CH4 is/will be of major importance in limiting increases in baseline surface ozone.
In many regions deposition of oxidised sulphur and nitrogen is large, and exceedance of critical loads occurs widely over many ecosystems. The intercontinental contribution to these exceedances is small. However, particular attention should be paid to long range transport to polar regions where ecosystems are likely to be more vulnerable.

Multi-model experiments shown that over the 4 polluted regions, the surface concentrations of sulfate and BC are mostly (70-90%) from "domestic" pollution sources. However, "foreign" contributions are increasingly large at higher altitudes. Over the Arctic surface, European pollution is the most significant source of sulfate while biomass burning from Eurasia is the major contributor to BC and POM. More than 80% of surface dust is from Asia and Africa.
Rather long 70 pages => needs to be shortened

Organisation can be improved
Lack material on TP1 and Field experiments
Provide key messages needed for Synthesis
A4 needs most work!

A5: Worldwide ozone standards: short-term

- 235 µg/m³ Indonesia
- 118 µg/m³ (60 ppbv) Japan
- 196 µg/m³ (100 ppbv) South Korea
- 200 µg/m³ China (Grade II)
- 180 µg/m³ (60 ppbv) India
- 118 µg/m³ (60 ppbv) Japan
- 235 µg/m³ Indonesia

8 hr
100 µg/m³ (51 ppbv)
120 µg/m³ (60 ppbv)
147 µg/m³ (75 ppbv)

A5: Impacts/Health

- There is broad consensus that exposure to ambient PM and ozone causes adverse health effects that range from minor sensory irritation to death.
- Short-term exposure to PM is associated with increased daily mortality and morbidity in hundreds of studies worldwide. Long-term exposure to PM2.5 has been associated with increased mortality from chronic cardiovascular and respiratory disease.
- PM is the most important air pollutant for health.
- Short-term exposure to ozone is associated with increased daily mortality and morbidity in hundreds of studies worldwide. Unlike PM, the evidence linking ozone with long-term mortality is limited.
3 studies have estimated that reductions in ozone precursor emissions may avoid more premature mortalities outside of some source regions than within, mainly because of larger populations outside of those source regions, especially North America and Europe.

TABLE 3. Annual Axial Cardiomyopathic Mortalities (Handbook) Following NOx, NMVOC, and NO Emission Reductions in Each Region, Assuming the Concentration Threshold (Level) and Assuming a Concentration Threshold of 35 ppb (permortal level)**

<table>
<thead>
<tr>
<th>Region</th>
<th>NOx</th>
<th>NMVOC</th>
<th>NO</th>
<th>Emission Reduction percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>3 (4 - 5)</td>
<td>4 (3 - 6)</td>
<td>3 (5 - 7)</td>
<td>3 (6 - 8)</td>
</tr>
<tr>
<td>CA</td>
<td>2 (1 - 3)</td>
<td>3 (2 - 4)</td>
<td>2 (3 - 5)</td>
<td>2 (4 - 6)</td>
</tr>
<tr>
<td>SA</td>
<td>1 (0 - 2)</td>
<td>3 (2 - 4)</td>
<td>2 (3 - 5)</td>
<td>2 (4 - 6)</td>
</tr>
<tr>
<td>EU</td>
<td>2 (1 - 3)</td>
<td>4 (3 - 5)</td>
<td>3 (4 - 6)</td>
<td>3 (5 - 7)</td>
</tr>
</tbody>
</table>

*Confidence intervals (95%) reflect uncertainty in the CRF scale (10).

Estimates of health impacts of air pollutants and long-range transport need research on:
- concentration-response relationships in less industrialized nations - over a range of concentrations, including short-term and long-term effects - low- or high-concentration thresholds,
- improving the resolution of global atmospheric models and improving nested models that encompass the global, regional, and urban scales, to better represent concentration gradients in and near urban areas,
- the possible differential toxicity of different PM components and particle sizes,
- possible changes in PM and pollutant mixtures as they are transported and age, and the effects of such changes on toxicity,
- possible interactive effects of PM, ozone, and other pollutants on human health.

A5: Impacts on vegetation

- Ozone impacts on agricultural crops, forests, grasslands: key experiments only from Europe, North America and, to a lesser extent, Asia.
- PM impacts, including deposition (eustrophication/acidification).
- Different metrics in Europe (AOT40) and North America (SUM06, Mx).
- AOT40 was as statistically robust in terms of defining crop damage but was considered to have implications for control strategies outside of Europe and hence AOT40 was retained.
- Flux metrics better suited to dealing with rising background O3.
Currently, global yield losses are predicted to range between 3% - 5% for maize, 7% - 12% for wheat, 6% - 16% for soybean, 3% - 4% for rice, which represents an economic loss of $14-$26 billion (10^9) per year.

A5: Vegetation; yield losses

• Experimental studies using O3 profiles that simulate enhanced background O3 concentrations, perhaps with a focus on crops, forests and grasslands that have growth periods extending into those seasonal periods when the relative LRT contribution to pollution is greatest.
• A pan-Asian OTC/FACE field campaign to establish dose-response relationships specific for Asian species (crops, forests and grasslands) growing under Asian climatic and management conditions.
• Assessment of the suitability of the flux-based O3 index to identify LRT effects on ecosystems.
• Development of flux networks that monitor O3 fluxes in addition to other biogeochemical species (such as N, C and water vapour).
• An improved understanding of the processes by which seasonality in O3 exposure influence damage to ecosystems.
• Development of flux networks that monitor O3 fluxes in addition to other biogeochemical species (such as N, C and water vapour).
• An improved understanding of the processes by which seasonality in O3 exposure influence damage to ecosystems.
• Global modelling experiments that use flux-based indices to estimate the influence of LRT on ecosystem damage.
• Improved critical loads for tropical and Asian ecosystems.
• Improved understanding of how LRT may influence recovery or time-development of damage of ecosystems to acidification and eutrophication.

A5: Vegetation recommendations

RF due to aerosols and ozone are highly uncertain among the most important uncertainties in climate change. Observations of aerosol absorption and vertical distributions are particularly needed to reduce these uncertainties.

Forcing results from changes in emissions of aerosols, their precursors, and ozone precursors (except methane) depend strongly on location, timing, and the background composition, and these dependencies merit further research.

Reductions in PM would improve air quality, but for cooling aerosols, including sulfate, nitrate and organic carbon, this would generally exacerbate global warming. Reductions in BC would typically benefit both air quality and climate.

A5: Impacts - Climate

Mainly looks at RF, list of introductory material

A5: Import sensitivity of RF

<table>
<thead>
<tr>
<th>Source</th>
<th>10% NA</th>
<th>10% RA</th>
<th>10% CA</th>
<th>10% SA</th>
<th>10% EA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>19% NA</td>
<td>19% RA</td>
<td>19% CA</td>
<td>19% SA</td>
<td>19% EA</td>
</tr>
<tr>
<td>CO2</td>
<td>19% NA</td>
<td>19% RA</td>
<td>19% CA</td>
<td>19% SA</td>
<td>19% EA</td>
</tr>
<tr>
<td>CH4</td>
<td>19% NA</td>
<td>19% RA</td>
<td>19% CA</td>
<td>19% SA</td>
<td>19% EA</td>
</tr>
<tr>
<td>N2O</td>
<td>19% NA</td>
<td>19% RA</td>
<td>19% CA</td>
<td>19% SA</td>
<td>19% EA</td>
</tr>
<tr>
<td>O3</td>
<td>19% NA</td>
<td>19% RA</td>
<td>19% CA</td>
<td>19% SA</td>
<td>19% EA</td>
</tr>
<tr>
<td>SO2</td>
<td>19% NA</td>
<td>19% RA</td>
<td>19% CA</td>
<td>19% SA</td>
<td>19% EA</td>
</tr>
<tr>
<td>NOx</td>
<td>19% NA</td>
<td>19% RA</td>
<td>19% CA</td>
<td>19% SA</td>
<td>19% EA</td>
</tr>
<tr>
<td>CO</td>
<td>19% NA</td>
<td>19% RA</td>
<td>19% CA</td>
<td>19% SA</td>
<td>19% EA</td>
</tr>
<tr>
<td>H2S</td>
<td>19% NA</td>
<td>19% RA</td>
<td>19% CA</td>
<td>19% SA</td>
<td>19% EA</td>
</tr>
<tr>
<td>NMVOC</td>
<td>19% NA</td>
<td>19% RA</td>
<td>19% CA</td>
<td>19% SA</td>
<td>19% EA</td>
</tr>
<tr>
<td>BC</td>
<td>19% NA</td>
<td>19% RA</td>
<td>19% CA</td>
<td>19% SA</td>
<td>19% EA</td>
</tr>
<tr>
<td>EC</td>
<td>19% NA</td>
<td>19% RA</td>
<td>19% CA</td>
<td>19% SA</td>
<td>19% EA</td>
</tr>
<tr>
<td>PM10</td>
<td>19% NA</td>
<td>19% RA</td>
<td>19% CA</td>
<td>19% SA</td>
<td>19% EA</td>
</tr>
<tr>
<td>PM2.5</td>
<td>19% NA</td>
<td>19% RA</td>
<td>19% CA</td>
<td>19% SA</td>
<td>19% EA</td>
</tr>
<tr>
<td>PM1.0</td>
<td>19% NA</td>
<td>19% RA</td>
<td>19% CA</td>
<td>19% SA</td>
<td>19% EA</td>
</tr>
<tr>
<td>PM0.10</td>
<td>19% NA</td>
<td>19% RA</td>
<td>19% CA</td>
<td>19% SA</td>
<td>19% EA</td>
</tr>
<tr>
<td>PM0.025</td>
<td>19% NA</td>
<td>19% RA</td>
<td>19% CA</td>
<td>19% SA</td>
<td>19% EA</td>
</tr>
<tr>
<td>PM0.010</td>
<td>19% NA</td>
<td>19% RA</td>
<td>19% CA</td>
<td>19% SA</td>
<td>19% EA</td>
</tr>
<tr>
<td>PM0.005</td>
<td>19% NA</td>
<td>19% RA</td>
<td>19% CA</td>
<td>19% SA</td>
<td>19% EA</td>
</tr>
</tbody>
</table>
The Arctic is experiencing rapid climate change. Arctic climate is affected by ozone and aerosols that are the result of long-range transport from other regions, as well as by ozone and aerosols outside of the Arctic. Deposition of black carbon in snow is understood to be an important contributor to warming in the Arctic.
What should we compare?
- past, present, future
- global, region
- average, peak

• Air Quality Objectives and Standards
 - In-source region emissions contribute the most to the highest peak concentrations, and therefore, exceedances of standards based on short-term average concentrations.
 - Intercontinental transport is already sufficient to exceed the thresholds of some air quality objectives, particularly those based on long-term averages or accumulated exposure over a threshold concentration (AOT40, ...)

• Source-Receptor Sensitivity
 - Ozone concentrations are most sensitive to changes in in-source region emissions, but changes in intercontinental transport can produce 30-70% of the response (impact sensitivity) of the in-source region controls.

• Health Impacts
 - Intercontinental transport of ozone may contribute 20% to >50% of avoided mortalities in a given receptor region. Emissions reductions, particularly in EU and NA, may produce more health benefits outside the source region than within.

• Ecosystem Impacts
 - Intercontinental transport of ozone may contribute up to 40% of crop yield loss, depending on location, crop and response functions used. At current baseline levels, crop yield loss exceeds $13B globally; any further increase will exacerbate this exposure.

• Climate Impacts
 - Ozone and its precursors, particularly methane contribute significantly to changes in global and regional climate, depending on location, timing, and background composition.

• Air Quality Objectives and Standards
 - Intercontinental transport events (particularly associated with dust and fires) are sufficient to exceed the thresholds of standards based on short-term average concentrations.
 - Except for dust (and vegetation burning?), intercontinental transport of PM is generally small, but may contribute a large fraction of concentrations in clean areas.

• Source-Receptor Sensitivity
 - PM concentrations are most sensitive to changes in in-source region emissions, but changes in intercontinental transport can produce 4-18% of the response (impact sensitivity) of the in-source region controls.

• Health Impacts
 - Intercontinental transport of PM may cause 380,000 premature mortalities, globally, 75% of which are attributed to dust.

• Ecosystem Impacts
 - Intercontinental transport of S and N contributes to acidification and eutrophication and changes in surface radiation.

• Climate Impacts
 - PM contributes significantly to changes in global and regional climate, both positively and negatively, depending on combined composition, location, timing, and background composition. Black carbon deposition on snow and ice is understood to be a particularly important positive forcing, especially for the Arctic and the Himalayan regions.
• Control of foreign sources of ozone and PM is not a substitute for domestic control of ozone and PM sources.
• Together, foreign sources contribute to significant adverse public health, natural and agricultural ecosystem damage, and near-term climate forcing on regional and global scales.
• As domestic sources are reduced and AQ standards are tightened, the absolute and relative importance foreign sources will increase without the implementation of controls. Increasing emissions in other source regions will require greater controls in a given region to meet fixed standards.
• Controlling emissions generates benefits outside of a given source region, potentially larger than the benefits within the source region itself.
• Collective action is needed to decrease emission sources and their various impacts at the local, regional, hemispheric, and global scales.